今日发帖数:0 | 昨日帖数:2 | 会员数:163551 | 欢迎新会员:rurururururu
粉体交流 > 高端粉材 > 气力输送的设计要点
  • 4317
    阅读
  • 0
    回复
气力输送的设计要点

tianjie
等级:五级士官
累计积分:124
可用积分:124
楼主 发表于:2007-08-08 08:55:19
回复    1楼
  气力输送广泛应用于水泥、石化、电力和冶金等行业中粉粒状物料的输送。由于其具有布置灵活,所占空间小,可避开已有设备和建筑物等优点,因此特别适合于水泥厂的改造和扩建工程。目前,新型干法水泥厂的生料入窑或入均化库、煤粉入窑或入分解炉大多采用了气力输送系统。本文通过分析常用气力输送系统的性能特点和选型要求,指出了每种气力输送方法的差异和限制,并对气力输送的系统选择、供料器选择、空压机?风机?选择、经济性分析、物料特性对系统选型影响这五个设计要点进行了总结。1 系统选择 1.1 正压及负压系统   正压系统是工业上最常用的,它适用于文丘里式、螺旋泵和仓式泵等绝大多数供料器。在管路系统中安装两路阀就能实现多点卸料和喂料。但多点喂料供料器过多,会造成大量空气泄漏。特别是旋转叶片供料器,其泄漏量约占空气总供应量的20%。目前国内水泥厂输送生料、煤粉及水泥等粉状物料的气力输送系统基本上采用正压系统。   负压系统适宜于从多喂料点输送物料到一个卸料点。它的优点是通过供料器的空气泄漏和压力降都很小,因而旋转叶片供料器能得到令人满意的使用效果。该系统在国内常应用于小型散装水泥驳船的卸料。 1.2 混合系统   混合系统结合了正、负压系统各自的优点,在该系统中,负压部分把物料从多个喂料仓中吸走,而正压部分把物料送入多个卸料仓。气源靠一台通风机或鼓风机提供。   双级混合系统比普通混合系统能更好地输送物料。普通混合系统虽对许多车间内部的短距离物料输送较为理想,但由于系统压力小,物料输送量和输送距离均受到限制。双级混合系统利用中间仓把负压和正压系统分开,并把负压和正压系统所需气源分成两个独立供气装置,这样可以分别选择最佳的真空泵和空压机。由于存在二个独立系统,故整个系统需要2台料气分离器。   图1为双级混合系统,是一个典型的大中型散装水泥船卸料装置,卸料能力达到100t/h以上。它的2台空气动力源中1台可选用液环式真空泵;另1台可选用螺杆式或往复式空压机,在较小系统中则选用罗茨风机。2 供料器的选择 2.1 供料器的选用因素   供料器的选择是系统设计中最重要因素。各类供料器对系统压力均有最适宜的使用范围?(见图2)。其中,仓式泵一般在高压、间歇操作中使用;旋转叶片供料器和双翻板阀供料器可用于正压和负压输送,但通常局限在较低压差范围内;螺旋泵在高压下也能很好地工作,但实际使用中它们仍被限定在中低压范围内;负压吸嘴仅在负压系统及混合系统中使用。总之,供料器的选用应依据其额客压力值、空气泄漏量、压力降和流量控制以及对具体物料适宜程度等综合因素来决定。   ?   (1)额定压力值。由于多种多样的管线压力降和管道内径适用于某具体装置,故 应考虑选择一个具有较高额定压力值的供料器来供给一个较小管径的线路使用。对给定的管道内径,具有最大额定压力值的供料器将产生最大输送量。 ?   (2)压力降。通过供料器的压力降应尽可能小。普通螺旋泵、M型富勒螺旋泵和仓式泵的压力降分别约为:50kPa、21kPa和20kPa;文丘里式供料器的压力降近似等于输送管线压力降;旋转叶片供料器和双翻板阀供料器的压力降可忽略不计。 ?   (3)流量控制。当供料量须保持恒定时,应优选能定量地供料并满足锁风要求的螺旋泵、锁风型旋转叶片供料器和双翻板阀供料器。文丘里式供料器不能提供空气锁风并且需要计量装置才能保持一个稳定的供料量。仓式泵在卸料时需要通过调节料气混合物的流化比例来实现流量控制。   2.2 供料器选择   供料器类型很多,如旋转叶片供料器、螺旋泵、仓式泵、文互里式等等,其使用性能各不相同。表1给出了各种供料器的选型指南。在使用表1时,应考虑供料器的操作压力范围(见图2)和对输送量及输送距离的限制。   3 空压机(风机)选择      空压机(风机)的选择主要取决于已知的空气需要量和系统管路操作压力,并加上空气损失和任何所需的附加裕量以及安全系数,就可从满足需要的几类空压机(风机)中作出最佳选择。大多数气力输送系统使用容积式空压机(风机),因为此类设备当压力变化时体积流量几乎不变。 3.1 供气压力      空压机(风机)排气压力等于输送线路的压降加上供料器、收尘器、阀等压降之和,再乘以一个安全系数(约为1.1);如果空压机(风机)和供料器之间管道较长(如超过50m)?,还需加上传递压损;在供气线路中调节空气量装置?如节流喷嘴等?的压损也必须考虑进去。 3.2 体积流量      如果空气的质量流量 ma(kg/s)已确定,那末可用近似方法求得标准状态下的体积流量V0(m3/s) ,见式(1)。     V0=0.816ma       ? (1) ? 体积流量也可通过输送空气初始速度来表达。首先依据输送参数(由理想气体定律产生)?可计算输送空气初始速度;然后根据式(2)可求得V0值,见式(4)。         v=4p0VoT/πd2pTo     (2)? 式中:v--输送空气初始速度?m/s; p0--标准大气压,101.3kPa(绝对); T--输送空气温度,K; d--管道内径,m; p--管道起始端空气压力,kPa; T0--标准空气温度,288K。 由式(2)得到(3):      V0=πd2pT0v/4p0T     (3)? 将p0和T0值代入(3)得:     V0=2.23d2pv/T      (4)?   需要说明的是V′O值是在管道内输送物料所需空气的体积流量,而所选空压机?风机?排气量必须考虑供料器和管道阀门等的泄漏量。对正压系统来说,旋转叶片供料器的空气泄漏量约为鼓风机排气量的15%~20%,而双翻板阀供料器的空气泄漏量约为鼓风机排气量的10%。   3.3 压力适用范围   正压系统中各类空压机(风机)的压力适用范围如图3所示。对 低 压 系 统 ( 约 10kPa),,轴流式或离心式风机都是适宜的,具体选择取决于系统负荷和需要的操作压力特性。这类风机常用于稀相输送,作为文丘里式和旋转叶片供料器的供气源,系统中使用薄壁管道。      当排气压力小于100kPa时,广泛使用罗茨鼓风机。该类型具有宽广的体积流量范围并能提供无油空气。此外,它有恒定的速度曲线,当传递压力增加时,体积流量仅轻微减少,从而保证了物料在一定压力下的悬浮流动状态。   当排气压力大于100kPa时,往复式和螺杆式空压机都能满足气力输送系统中所需最高压力。单级回转滑片式空压机的工作压力可达到400kPa(表压)。   真空泵在图3中没有列出,因为这类设备选用比较少。对负压系统,如真空不是太大,常使用离心式通风机和罗茨鼓风机;对于较高真空,则采用水环或液环式真空泵。   4经济性分析   当几种气力输送系统都适用于某一具体应用时,应选择最经济的。这里主要以仓式泵的实测数据为例,证实通过选择最佳罐尺寸和最佳操作压力可大大降低能耗和操作费用。   4.1 投资费用   总的来说,高压密相输送中空压机和供料器的价格比较昂贵;低压稀相输送系统中管道和收尘器的费用较贵。当输送距离小于50m,使用稀相系统的投资费用低;超过50m,密相系统的投资费用较低。对磨琢性物料的输送,用能周期性更换的零件?如弯管等?代替昂贵的耐磨合金零件可降低投资费用。   4.2 操作费用   主要动力费用来自空压机,其次是旋转叶片供料器和螺旋泵及袋除尘器,其它设备的动力消耗相对空压机来说是很小的。 使用集中气源可减少系统投资费用,但其操作费用比单独供气要高得多。如工厂集中气源压力为(600~700)kPa,而气力输送系统所需压力仅为100kPa,则使用集中供气费用要比单独供气高出一倍左右。如果必须使用集中供气,那末高压空气将主要用于仓式泵和分级管道。   密相系统的操作费用总是较低的。当输送距离为50m时,稀相输送操作费用是密相输送的5倍以上(依据仓式泵使用情况);随输送距离增大,这个差异将减少。操作费用主要来自电机的功率消耗,可用式(5)进行粗略估算。   P=165ma1n(p1/p2)?    ?(5)?   或 P=202VO1n(p1/p2)   ?(5-1)? 式中:P--电机消耗功率,kW p1--空气进气压力,kPa(绝对)? p2--空气排气压力,kPa(绝对) ? 电机消耗功率乘以单位电价即为每小时操作费用。   4.3 仓式泵实测结果   4.3.1 最佳罐尺寸   仓式泵的压力罐有效容积VB影响系统所需能量。图4为一个实际运行仓式泵输送装置的压力罐有效容积特性曲线。其中实际输送阶段功率消耗P是在空压机联轴节处测得。在双仓系统中,VB,ges是二个相同的单罐容积之和(=2VB)。输送水泥时空压机输出压力为pv=400kPa(表压),输送粉煤灰时空压机输出压力为pv=300kPa(表压)。图中还定性地显示了随着罐尺寸减少,每小时所需输送周期次数nch增加的趋势。   如图4所示,当罐尺寸大于临界容积时,其功率消耗独立于罐尺寸;当罐尺寸小于临界容积并降至极限容积时,相应的无效时间会成倍增加。为了完成给定的额定输送量Ge,就需要在剩余的有效输送时间内用一个较高的实际输送量GS来补偿。   双仓系统(一个罐加压和输送,另一个罐排气和进料)罐的临界容积比单仓系统罐的临界容积低。比较图4中两个系统功率消耗P可以看出,双仓系统比单仓系统的能耗更低。   从能量观点来看,最佳罐容积就是其临界容积。粉煤灰和水泥相比,粉煤灰具有更好流动和输送性能,其能耗也明显减少。 4.3.2 最佳操作压力   单仓泵系统输送同样物料时功率消耗值P与空压机输出压力Pv之间的函数关系见图5。其中输送水泥的压力罐有效容积为VB=5m3,输送粉煤灰的压力罐有效容积为VB=10m3。图中还定性地画出了随着压力pv的减少,对应管道直径dR变大的趋势。该图还表明这个装置输送水泥和粉煤灰时均有最小电耗值,这些最小值的位置与理论计算值比较一致。因此设计一个在最佳操作点(p*v,d*R)?工作的装置,可以节省大量的能量。  5 物料特性对系统选型的影响  (1)粘着性和附着性。粘性物料会粘结或堵塞卸料斗、供料器和输送管道。因而在旋转叶片供料器中应优选吹扫式旋转叶片供料器。 ?   (2)易燃易爆性。输送塑料、化学品、金属粉末和煤粉等易燃易爆性物料时,应使用防爆阀和自动灭火装置等安全措施。 ?   (3)湿含量。如果湿物料中50μm以下的细粉量<10%,多数能在传统气力输送系统中输送。若湿物料中湿含量高,湿细粉会粘附在弯管的内壁,引起管道堵塞,则供料器应选用吹扫式旋转叶片供料器。如物料不是太潮湿,通过加热输送空气就能减轻粘堵问题。 ?   (4)静电。物料电荷聚集会引起粘附并影响物料流动性,此时可通过空气在线增湿解决。在密相输送中,因使用空气量较少,故增湿费用较低。 ?   (5)磨琢性。为降低输送管道和零部件磨损,输送磨琢性物料时应选用较低输送速度。在稀相系统中要避免使用有运动部件的供料器,并通过使用短半径弯管?R/D=2~3?、一端不通铸铁T形管和自蔓延高温合成技术制造的陶瓷钢铁复合管等措施来延长管道的使用寿命。 ?   (6)易碎性。输送过程中,大多数物料的破损发生在弯管或螺旋泵这类供料器中。因此,设计系统时应少用弯管并避免使用螺旋泵这类易破碎脆性物料的供料器。 ?   (7)颗粒性。顶部卸料仓式泵和普通旋转叶片供料器不适用于粒状物料输送。后者会剪断粒状物料,而偏置式旋转叶片供料器可避免这种现象。 ?   (8)吸湿性。通过干燥输送空气可避免吸湿性物料带来的问题。使用冷冻法或干燥剂可保持物料干燥。有时候如水分吸附不大,物料也能用未经干燥空气在密相状态下输送。 ?   (9)低熔点。当低熔点的高速颗粒?软化温度150℃?冲撞管道内壁和弯管时,可能发生局部熔化。对大多数低熔点物料,使用低速输送可消除这个现象。 ?   (10)细度。微米或亚微米级细粉会在输送过程中涂附在管道内壁上,从而减少了管道横截面积并降低了输送量。通常使用仓式泵并在管道中使用能定期振打挠性管解决这一问题。 ?   (11)气体渗透性和保持能力。稀相输送是以低压、高速以及物料均匀分布在输送管道横截面上为特征的,因此输送过程基本上是由影响周围气流的单个颗粒物料性质决定的。而密相输送的特点是高压、低速和严格分离二相流动,被输送物料主要是以管道底部的束状形式流动,偶尔有沙丘、不规则结团或充满管道横截面的栓状形式流动,这个输送过程受到物料整体流动性质而非单独颗粒物料特性的影响。因而物料的气体渗透性和保持能力对密相系统的影响较大,而对稀相系统的影响则较小。   当物料的空气保持能力较高(即气体渗透性较差)时,只需较少的空气量就足以使物料流态化并可减少内磨擦角。当空气流动停止以后,这个流动过程还能延续一定时间,在这个阶段内磨擦角通常小于壁磨擦角。在密相输送系统中,这类物料的结团和成栓很容易被打散,物料在管道底部基本上以流化束的形态流动。在密相栓状输送中,它们的临界成栓长度较短。另外,有较高空气渗透性?即空气保持能力较低?的较粗物料所允许的临界成栓长度将比管直径还要长,其料栓的稳定性与栓长和管直径之比成正比。这类物料在密相输送中易结团和成栓,易造成堵塞,应尽量少用或不用于密相系统。